Grażyna Dehnel , Michał Pietrzak , Łukasz Wawrowski
ARTICLE

(Polish) PDF

ABSTRACT

The main source of information about revenues of small business sector is currently provided mainly by sample surveys conducted by the Central Statistical Office. Parameters of interest can only be estimated with acceptable precision at the level of the country and province or by NACE section. It is caused by the sample size, method of estimation and sample design. The motivation for the study was the growing demand for reliable estimates at a low level of aggregation. The aim of this study was application of the Fay-Herriot model, one of the methods, which use auxiliary variables, for estimating revenue of enterprises employing 10 to 49 employees. The study used data from a meld DG 1, the most important research in the field of business statistics, as well as data from administrative registers. The study allowed to observe some regularities and characteristics of the small business sector in Poland.

KEYWORDS

small area estimation, indirect estimation, Fay-Herriot model, administrative registers economic statistics

REFERENCES

Benavent R., Morales D., (2015), Mul tivariate Fay-Herriot Models for Small Area Estimation, Computational Statistics & Data Analysis, 94, 372–390.

Boonstra H. J., Buelens B., (2011), Model-Based Estimation, Statistics Netherlands, Hague.

Dehnel G., (2015), Rejestr podatkowy oraz rejestr ZUS jako źródło informacji dodatkowej dla statystyki gospodarczej – możliwości i ograniczenia, w: Jajuga K., Walesiak M., (red.), Taksonomia 24. Klasyfikacji i analiza danych – teoria i zastosowania, Wydawnictwo UE we Wrocławiu, Wrocław, 51–59.

Fay R., Herriot R., (1979), Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data, Journal of American Statistical Association, 74, 269–277.

Guadarrama M., Molina I., Rao J. N. K., (2016), A Comparison of Small Area Estimation Methods for Poverty Mapping, Statistics in Transition new series and Survey Methodology, 17 (1), 41–66.

GUS (2013), Ludność. Stan i struktura demograficzno-społeczna. Narodowy Spis Powszechny Ludności i Mieszkań 2011, Zakład Wydawnictw Statystycznych, Warszawa.

Horvitz D. G., Thompson D. J., (1952), A Generalization of Sampling Without Replacement from a Finite Universe, Journal of the American Statistical Association, 47, 663–685.

Pratesi M., Salvati N., (2008), Small Area Estimation: the EBLUP Estimator Based on Spatially Correlated Random Area Effects, Statistical Methods and Applications, 17, 113–141.

Rao J. N. K., Molina I., (2015), Small Area Estimation, 2nd Edition, Hoboken, New Jersey, Wiley.

Wawrowski Ł., (2014), Wykorzystanie metod statystyki małych obszarów do tworzenia map ubóstwa w Polsce, Wiadomości Statystyczne, 9, 46–56.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0